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Interesting problems in gravitational collapse often involve modeling shock
phenomena. Typically, an artificial viscosity method is used to accomplish this.
Here we formulate equations of spherically symmetric general relativistic
hydrodynamics which include more sophisticated forms of the artificial viscosity

and also include an artificial heat flux.
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1. INTRODUCTION

Many problems in spherical general relativistic hydrodynamics involve modeling shocks.
In particular, modeling supernova core collapse and the subsequent explosion require
shocks to be evolved accurately. In order to do this, the artificial viscosity method has
frequently been used [1]. This method is used in non-relativistic applications very
successfully, and it is employed in relativistic calculations in essentially the same manner: a
term is added to the pressure of the system which is significant only when the velocity is
changing rapidly. This term is referred to as a scalar artificial viscosity, and mimics the
effects of the real bulk viscosity of the material [2]. It allows for the generation of entropy
by a shock. Here we describe a modification of this prescription. We add terms to the
stress-energy tensor of the material which mimic the contributions of both bulk and shear
viscosity. These are referred to as a tensor artificial viscosity. Other terms mimic radial heat
flow, and are referred to as an artificial heat conduction. The use of these frequently allows
for more accurate modeling of shocks, particularly in spherical problems [3].

We present the development of spherical general relativistic hydrodynamics including

these terms. A subsequent paper will discuss the results of stellar collapse calculations

using these equations.
2. DEVELOPMENT OF THE EQUATIONS

The physical constants G and ¢ will be set equal to one in the following. We start with a

spherically symmetric metric in comoving coordinates [1]:
ds? =a’dt? — b*du® - R*dQ? (1)

Here a is a temporal metric coefficient, and b is a radial one. We use the rest mass [ as our
radial coordinate. R is the areal radius. The quantity ¢ =1In(a) is sometimes used in place
of the quantity a. We wish to solve the Einstein equations with this metric and a stress-
energy tensor that respects spherical symmetry. The most general form for this tensor is [4]
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Here p is the locally observed rest mass density, € the locally observed energy per unit
mass, and P the locally observed pressure. In scalar artificial viscosity formulations, the is
no off-diagonal term H, and Q, = Q,; the pressure plus the viscous pressure is isotropic.
Here, we modify the stress energy tensor in two ways. We allow for heat flow in the radial
direction, and we no longer force the viscous pressure to be isotropic, although it is the
same in the two angular directions. Qg is an artificial viscosity term which acts like a
pressure in the radial direction, and Q, is an analogous term which acts in the angular
directions perpendicular to the radial one. H acts like a heat flow in the radial direction. The
components of this tensor are written in the local inertial frame, as denoted by the carets
over the subscripts. Note that this is different than the comoving coordinate frame.

Given the metric and the stress-energy tensor, we can write down the Einstein
equations Gas = 87[T56. Components of the Einstein tensor can be found in [4]. The
following draws heavily on [1] and [5]. The addition of our new terms makes the

development, and the resultant hydrodynamics calculations, more complex.
There are four non-trivial components of G.;:
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Here ¢ =0, and '= d, .are derivatives with respect to t and .

The ;, ;, and ; Einstein equations become, after some algebra, respectively:

’

, . b 1 RR’> RR?
4r[p(1+ )RR +4ﬂR2R;H=E{R— T } ¢)

47rabRH=R’—Ra——R’§, (8)
a

and
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+
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We also have two equations from stress-energy conservation, V,T® = 0. Because of
the Bianchi identity, V,G* = 0,we can replace two of the equations that result from

G, =8nT, . We choose to replace the g and 2 equations. Stress-energy conservation can

be written in the comoving coordinate basis as [6]
L—g—(q/—gTab)+Fi’dT°‘1 =0. (10)
/—g ox?

The affine connections I can be found from Ref. 4, pp. 248-251 ; g =-a’b’R*sin’ @

denotes the determinant of the metric tensor. There are two non-trivial equations that result
from V,T* =0, corresponding to the t and 1 derivatives in equation (10):
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We assume that rest mass is conserved. This provides an additional equation. This is a
constraint of the density and fluid four-velocity u* =4%-. We require Va(pu“) =0. This

covariant divergence can be written in a coordinate basis [6] as:

L (rpu )=0 (13)
and in a coordinate basis u” = (1,0,0,0), so rest mass conservation becomes

g—t(pr2) =0. (14)

Given an equation of state P(p,e) and functional forms for Qg,Q,,and,H,our
equations form a well-defined hyperbolic set. We now manipulate the equations to develop
a set of equations that resemble the usual spherical general relativistic equations.

First, we eliminate the metric coefficient b using equation (14). We define the metric
coefficient b = 1/(41tpR2). This is the usual choice and ensures that the radial coordinate is

rest mass [2],[5].
Using this expression, we can eliminate b in equation (11) to obtain an expression for

the time derivative of the energy density:

_(P+QR)[—:;:|.+—?:—1:(Q QA)——a—[ a’R’ H] (15)

Here we introduce the proper velocity

UZE. (16)



We define m, the gravitational mass:

m:f 4nR2p(1+e)g—E+% dp (17)

Integrating equation (7) with respect to 1 yields

1 RR? RR”
We define
R’ dR
F:—b =47pR>—, (19)

the proper volume coefficient. Solving equation (18) for I yields
1

, 2mT:
F—[1+u R]. 20)

We now obtain an expression for the spatial derivative of the temporal metric coefficient

a. We solve equation (12) for £:

’
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Equation (22) or (24) is integrated inward from the edge of the star. A boundary
condition must be provided. In [2], the choice a = 1 is made; in [5], ¢ at the edge is set

equal to the log of the Schwarzschild temporal metric coefficient:

26MT. w 26MT”
Desse ZIHUI_ Rc? J':HC_Z_ Rc? ] ] 24

Using equations (16), (18), (21) and (22) along with equations (8) and (9), we obtain

an expression for the time derivative of the proper velocity:
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Eliminating b in equation (8) gives an equation for the time derivative of rest mass

density

(PR?)  au’  47bRH
pR? R’ R’

(26)

which corresponds to equation (32) in [2]. Alternately , as in [5], one can update the rest

mass density by using the fact that the rest mass of a zone is constant, i.e.

A
W} =0. 27)

(Ap) =[
Solving this equation for p in terms of R and I yields the density of the zone spanned by

AR.
It proves useful to define the enthalpy w, as it appears in many of the equations above:

P+Qx (28)
p

w=l+e+



A full list of the equations with G's and c's restored is provided in Table L
The equations above conserve both rest mass and energy. This can be shown by
explicitly exhibiting equations for these quantities in conservation form. Manipulation of

the equations produces:

a[r] 9
= _;} - E[47[R2au] =0 : (29)
and
irr@ + %)CZ + H—‘j]
ot c pc
) (30)

_%[4nR2au(P+QR)+4nR2aHr] =0

The first equation describes the relationship between proper volume per unit rest mass
and the change in coordinate volume. They change in such a way as to keep the rest mass
of each zone constant. The second equation shows that if H and Q, are zero at the origin
and on the boundary of the system, the total mass of the system remains constant. These

equations correspond to equations (47) and (48) of [2].

3. FORMS FOR Q AND H

Both components of the artificial viscosity, Qg and Q,, have the units of pressure,
force per area. The artificial heat flux H has the units of an energy flux, energy per unit area
per time. Different forms for Q and H perform differently in modeling situations such as
wall heating, shocks passing through density gradients, shockless compression, and
unequal zone sizes in simulations. Choosing the best implementation of these quantities for
a particular problem requires some experimentation. We will examine some general
considerations below. A detailed study of the effects of different formulations for Q and H
is being undertaken.

First we will examine artificial viscosities alone, i.e. H = 0. The simplest case is the
scalar artificial viscosity. This obtains when Q, =Q,. Then C = 0, and we recover the
familiar equations of [2] and [5]. The artificial viscosity then shows up everywhere in the
equations as a single function Q added to the pressure P. Many different functional forms
for artificial viscosities have been proposed. Refs. 1 and 3 discuss several. These typically

depend on velocity gradients; some modifications are functions of rates of change of



density, sound speed, or more sophisticated functions of the velocity. A widely used form

is that given in von Neumann and Richtmeyer [7]:

2p(Aw?)'F i Auj =t —ur <0

jth j+l j . (31)

: n+}
if Au; /7 >0

n+Y% _
Qi =

In non-relativistic calculations, u is the coordinate velocity. In relativistic situations, the
proper velocity is used.

A tensor artificial viscosity requires Qg #Q,. In this case, we have two separate
functions Q, and Q,, for which to give a functional form. Typically, however, Q, is
chosen to be some multiple of Q,, which is calculated as a scalar Q is. The relativistic
equations can be reduced to non-relativistic equations by taking G — 0, c% — 0. The non-

relativistic equation for the time derivative of velocity 1s

P+QR)_QR—QA' (32)

i =—-4nR? i
dm PR

The corresponding equation, number (1) from [8] is

JP+Q) 3Q (33)

1
TR R

Comparison of the first term of these equations shows that Q, = Q. Comparing the
second term then shows that Q, = —+Qg. A similar comparison to the hydrodynamic
equations of Schulz [9], shows that he has implemented the choice. Q, =0. Whalen [10]
has chosen. Q, =—4Qy. Different functions have been chosen for Qg in all three cases,

however.
Whalen [10] gives

_ 2 V(v 1o )
Qg =(3/2)(Cl) p 8R( M vj, (34)

Janke [8] gives
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a R2 2
Qr = 312p(—v—)[ﬂ a(R V)), (35)

JR® | R OR®

where C, and | are constants, v is coordinate velocity and ¥ is the coordinate velocity
viewed as a three-vector. '

There are several ways of constructing a difference approximation to this Qg>
depending on whether the partial derivatives are expanded. Whalen expands them and sets 1
= AR, yielding

UAR)if Au<0
R /

CgpAu(Au - 36)

R

0 if Au>0

Janka, following Tscharnuter and Winkler [11], differences Q, with the derivatives intact:

[ 2 AR%)(Au AR) o ARM)
o .| oP A(R3)[R A(R3)] f A(R?) 0 -
R 0 i AR
A(R?)

The artificial heat conduction H has been studied extensively by Noh [3]. It is a
function of gradients in velocity and in thermal energy, and is non-zero only when the
artificial viscosity is large. It is an attempt to mimic the heat transfer that occurs between
adjacent elements of a fluid when a shock passes through the material. This allows for
shocks to develop more smoothly. This is useful in cases where spurious uneven heating
occurs, such as when fluid impacts a wall, or in a spherical collapse. In these cases, a large
velocity gradient occurs. Most implementations of artificial viscosities produce too much
heat, causing a spike in the energy density and density. The artificial heat conduction also
allows for a smaller value of artificial viscosity to be used. This is useful if errors
proportional to the value of Q arise, such as when shocks propagate through density

gradients. Noh gives his standard artificial heat conduction as



11

n+} n+}%
o pAunj:ﬁ pAU,;yz% (s~ Eary) HQIE>O
H;H = pAu; 7 +pAuj—}§ ’ i (38)
0 ifQR;]:}}/f =0

Here, €, is the thermal part of the energy density. Only a gradient in thermal energy gives
rise to a heat flux. For an ideal gas equation of state, all the energy density is thermal. For a
typical nuclear equation of state, for example, most of the energy density is due to internal
energy in the zero temperature portion of the EOS. A gradient in this internal energy would

result in H = 0.
4. SUGGESTED DIFFERENCE FORMULATION

Here we list a set of difference equations for the above hydrodynamics equations. This
difference formulation has been implemented and used to test the effects of various choices
for Q and H on several different test problems. These equations are essentially those of
Refs. [2] and [5] accept for the addition of the terms in Q and H. The innermost edge, at R
= 0, is numbered zero, the outermost edge, the boundary of the star, is numbered J. Some
quantities are located in zone centers, others on zone edges. We use the notation of Ref.
[2]. Superscripts denote time centering, and subscripts denote spatial centering. Half-
integer lower subscripts denote zone centered quantities. Zone centered quantities are p, €,
P, and w. Edge centered quantities are R, u, m, u, H, and C. The rest mass L is used as
the radial coordinate and does not change with time. The differences Ay and AR. are zone
centered. a and I may be centered in either way, depending on the method by which they
are calculated. Both methods are described below. Artificial viscosities come into the
equations in a manner similar to that of the pressure, and so are naturally zone centered
quantities. The artificial heat conduction is an energy flux and so is more naturally
calculated at zone boundaries.

Often, good centering requires that an equation involve the value of a quantity at a place
where it is not centered, for example pj“+1 or P;’f}?. In this case, averages are taken.

The following difference equations allow the calculation of time n+1 quantities from
time n quantities. The equations are explicit - time n+1 quantities are explicit functions of
time n quantities. The only exception is the temporal metric coefficient a, which can be
calculated only after most other quantities are updated. One can either accept that a is badly
centered, or do two sweeps of the following equations, calculating in the first sweep a

provisional time n+1 value used in the second sweep.



Velocity is offset half a step in time:

u; = "/2 —a; "At"

47t(Rn)2 [ Py +Qriy = Piy = Qeiy
w! Ay,

j
L omy Gm'»' + 47rG(
(R} )2

+47r(R;‘)2VI;—iC;‘}
J

P} +Qq) R} (39)

This offset makes the radius update equation second order in time, rather than first:

R =R? + At" ] (40)
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Rest mass density can be updated in a way that resembles that of Ref. 2, or in the way

suggested by Ref. 5.
wr - @1
le_y Rn+y Rn+}/

7 n+)4

f=am¥ A 42
a_j Ry (42)
(R*)?

n+l n i-%
Pi-y = Pj-y - exp(f) (43)

- i- (R )J P

or
n+l

n+l A’uj—}/z rj—}ﬁ (44)

PJ/_ 4 (R?H)3—(R;‘_+ll)3

With the new density and velocity, we can calculate the artificial viscosity, which we
center at time n+1/2. Q, can be calculated according to many different prescriptions;
below, we use the standard Lagrange Q.

n+Y
2p(Au® if Au™” <0
QR;,:}}/? — 'D( )j+}§ jth (45)
’ if Ault% >0

Q, is set to be some multiple of Qp:
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Qg for scalar formulation

" 1 .
Q.= —EQR for Janka's and Whalen's formulation (46)

0 for Shultz' s formulation

Energy density can be updated after the new density is calculated. The pressure
centered at time n+1/2 can be obtained by calling the EOS with an average of the new
density and old density and a guess for the energy density at time n+1/2, or can be formed
by an average of old and new pressures. In this later case, we have an implicit equation
which must be solved iteratively, since the time n pressure depends on the time n energy

density:

n+}4 n+4 1 1
€ —E'— —(P+Q )'—1 n+
i J " A':pj }l/ pJ Vzil

2a'.’+}52u‘.‘*ff Y Y

- - n+ n+

* AR (Qurf - Qurt) . (47)
Py Ry

-2 (R - g (R

For an explicit formulation, an equation of state call is necessary to determine the
intermediate value:

n+l _ pjn—}é +pjn—}/z n+Y%
Piy = P( 5 bk ) (48)

A second equation of state call after epsilon is updated produces the time n+1 value of
pressure. For an implicit formulation, pressure and energy density are updated

simultaneously:
n+l n
presi _ | Pig iy
-5 2 ’

with the time n+1 value of pressure obtained with an equation of state call using time n+1
values of density and energy density.

After the energy density is updated, the artificial heat flux can be calculated:

n+4% n+}/
pAuJ+}/ pAU n n n+Y%
H 2h l:pAu'.”}? +pAun+}/ (Ethj+}é _gthj-}é) lfQRH}’ >0
= i+
0 if Q"% =0

i+h

(49)

The quantity C can now be obtained:
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an_ 20 RIV-RYY

j+1

i 7 pn+l
Ri™ A,y + Ay,

(QR;H _ QA;H)

n+l n+l n (50)
pj—%l 2 I—gj 2 Iz_Ij 2
e e R/ (e) (R))

The temporal metric coefficient is updated by a purely spatial integration inward from
the edge:

n+l n+l n+l n+l
Pl tQriy =Pl —Qelly
+ Cj
f=

Al
an+an+l o (51)
i
ajly =aj/, exp(f) , (52)
with
-5
2Gmn+l un+12 2Gmn+1
a" =[1- ! 1+ 2—- ! R 53
I+4 ,: R}”lcz J,: c2 R?”cz (33)
or .
n+l n+l n+l n+l
[Pﬂ% t QRj+§A_ Pj—% B QRj‘% " C;H}
n+ n+ #
e¢j_ll =C¢j l nil n+l (54)
P; W
with
-%
nl 2GM™! ™ 2GM
e¢J :[1_ Rn+léz Jl:l+ ::2 - Rn+léz (55)
] J
The proper volume coefficient is updated:
rn+l _ 47[ n+l (Rn+l )ZARn+1 56
% = TP Ry i-% (56)
or
n+12 n+l__n+l
AR P B (57)
C Rj c

The mass is obtained by a spatial integration out from the center, where m = 0:
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n+l n+l n+l

. ; u. .

n+l __ __n+l n+l1 ith ith ik

mj;, =mj" + l“j%(l + 7 ]A,uj% + o Auj% (58)
ith

5. SUMMARY

We derive the equations of spherical general relativistic hydrodynamics including a
tensor artificial viscosity and an artificial heat conduction. Some general characteristics of

artificial viscosities and an artificial heat conduction are discussed. A suggested difference

formulation of the set of equations is given.
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Table I. Spherical General Relativistic Hydrodynamics Equations with Tensor Artificial
Viscosity and Artificial Heat Flux

Velocity:

with C ——21:—(QR—QA)+—‘O——[ H ]

Radius:
R =au

Rest mass density:

R?) ro4
(o 2) __aw 4rGRH T
pR R ¢t T 47 R°AR
Energy density:
1] 2au 41 ’
£ = —(P + QR)I:E} +—I§—(QR - QA) - —[ 21{21'1]
Temporal metric coefficient:
! P+
v (PrQy) = with

a  (p?+pe+P+Qg) (pc’ +pe+P+Q;)

_[,_2oMT,, v _20MT”
foawe [T Re | TR

or
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’

, (P+Qy) C

=_(pc2+pe+P+QR)—(pc2+pg+P+QR) with

_f[_2oMT,, u*_2cMT”
O | v

Mass:

" u
m=f 4nR2p(1+£)g—R+% du and or m=j Tp(1+e)+4H ap
A L pc A pct

Proper volume coefficient:

2
T =47pR’R’ or F:1+u—2_&mz+ll
c Rc
Enthalpy:
_1+_£T+P+2QR



